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Abstract. A new scheme of the influence of quantum interference on the spontaneous emission in a coher-
ently driven three-level medium is presented in this paper. The results are the same with that discussed
by [S.-Y. Zhu, L.M. Narducci, M.O. Scully, Phys. Rev. A 52, 4791 (1995)] under resonance conditions, but
they are different when the driven field is detuned.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments –
42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

Quantum interference in atomic systems in spontaneous
emission can lead to many novel effects. Quenching of
spontaneous emission [1–3] has been discussed for many
years, where the coherence which is induced from spon-
taneous emission process is used for the preparation of
the atom. Lately there are many related works in this
field, including the modifications to spontaneous emis-
sion, resonance fluorescence, probe absorption spectra,
and photon statistics [4–9], which are considered in V-type
atoms [6–8], Λ-type atoms [9] and four-level atoms [5],
respectively.

In this paper we investigate the effects of quantum in-
terference on the spontaneous emission in a Σ-type atom
– a model similar to reference [10], but with different cou-
pling schemes. In reference [10], the spontaneous emission
from the excited to the ground state when either of them
is coupled to another excited state by a coherent field was
discussed. In this paper, we study the spontaneous emis-
sion between two excited states when either of them is
split into Autler-Townes doublets by the action of a coher-
ent field. We find that the results are the same with that
of reference [10] under resonance conditions, but they are
different when the driven field is detuned.

2 Simplified models
and spontaneous-emission spectra

The setting of interest is illustrated schematically in
Figure 1. Because the calculation strategy is somewhat
different in the two cases for reasons of convenience, we
consider each separately and, for ease of nomenclature,
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Fig. 1. Schematic representation of the atomic configurations
discussed in this paper; (a) upper level coupling and (b) lower
level coupling. In both cases Ω0 denotes the Rabi frequency of
the external driving field, and ω0 its carrier frequency. The dot-
ted line indicates the spontaneous decay process that generates
the spectrum of interest.

we refer to the configuration of Figure 1a as the “upper
level coupling” while we refer to that of Figure 1b as the
“lower level coupling”.

In the setting of Figure 1a: the excited atomic state of
interest, level 3, is coupled by a coherent field to another
level of the atom, level 1 in this case, and it undergoes
spontaneous emission to the level 2 as a result of the in-
teraction of the atom with the vacuum. The second situ-
ation is illustrated schematically in Figure 1b: the atomic
level 2 is coupled by the coherent field to the level 1, while
level 3 decays to the level 2 by spontaneous emission. In
the two simplified models we ignore both the mechanism
by which the atom is placed in its initial excited state and
the spontaneous relaxation of the atom from level 3 and
level 2 to level 1.
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2.1 Upper level coupling

With reference to Figure 1a, in the interaction picture the
Schrödinger equation for the driven atom is

d
dt
|Ψ(t)〉 = − i

~
HI |Ψ(t)〉 (1)

where

HI(t) = i~
∑
j

gj(e−iδjtbja
+
3 a2 − eiδjtb+j a

+
2 a3)

+ i~(Ω0e−i∆0ta+
3 a1 −Ω∗0ei∆0ta+

1 a3) (2)

and where the detuning parameters δj ,∆0 are defined by

δj = ωj − ω32, ∆0 = ω0 − ω31. (3)

We assume that the state vector of the system at time t
have the form

|Ψ(t)〉 = C1(t) |0〉 |1〉+ C3(t) |0〉 |3〉+
∑
j

C2j(t)b+j |0〉 |2〉

(4)

where |0〉 denotes the vacuum of the electromagnetic field,
and the initial values of the expansion amplitudes are
C2j(0) = 0, and C1(0), C3(0) are arbitrary (apart, of
course, for the normalization requirement).

Upon substituting equation (4) into equation (1) and
after some simple steps, we arrive at the following first-
order differential equations for the expansion amplitudes:

·
C2j (t) = −gjeiδjtC3(t) (5a)

·
C3 (t) = Ω0e−i∆0tC1(t) +

∞∑
j=1

gje−iδjtC2j(t) (5b)

·
C1 (t) = −Ω∗0ei∆0tC3(t) (5c)

which we can solve along the lines of the traditional ap-
proach of Weisskopf and Wigner [11], as shown in some
detail in Appendix. The initial conditions are

C3(0) = 1, C1(0) = 0. (6)

The required results are

C1(t→∞) = 0 (7a)
C3(t→∞) = 0 (7b)

C2j(t→∞) =
i(δj −∆0)

[|Ω0|2 − δ2
j +∆0δj − iγ(δj −∆0)/2]

(7c)

where γ = 2πD(ω32)g2(ω32), D(ω32) is the vacuum den-
sity of models calculated at the atomic transition fre-
quency. In this calculation we have ignored the small
vacuum-induced frequency shift at the transition fre-
quency ω32.

The spontaneous-emission spectrum, S(ω), is propor-
tional to the Fourier transform of the field correlation
function〈
E(−)(r, t+ τ)E(+)(r, t)

〉
t→∞

=〈
Ψ(t) | E(−)(r, t+ τ)E(+)(r, t) | Ψ(t)

〉
t→∞

(8)

where, in a finite quantization volume, the positive and
negative frequency parts of the electric field operator are
given, respectively, by

E(+)(r, t) = i
∞∑
j=1

(
~ωj

2ε0V

)1/2

εjbj exp[i(Kjr − ωjt)]

(9a)

E(−)(r, t) =
[
E(+)(r, t)

]+
(9b)

and where the asymptotic form of the state vector is

|Ψ(t→∞)〉 =
∞∑
j=1

C2j(∞)b+j |0〉 |2〉 (10)

with ∑
j

|C2j(∞)|2 = 1. (11)

After substituting equations (9a, 9b, 7c) into equation (8),
and after carrying out the infinite volume limit, we arrive
at the required result

S(ω) ∝ |C2,ω|2

= g2 (δ −∆0)2

(δ2 − δ∆0 − |Ω0|2)2 + (γ/2)2(δ −∆0)2
(12)

with δj replaced by δ = ω − ω32 in equation (7c).

2.2 Lower level coupling

For the setting illustrated in Figure 1b, we introduce the
dressed atomic eigenstates |α〉 and |β〉 in the interaction
picture, defined by

|α〉 = ieiΦ sin θ |1〉+ cos θ |2〉 ,
|β〉 = −ie−iΦ cos θ |1〉+ sin θ |2〉 (13)

where

Ω0 = |Ω0| eiΦ (14a)

sin θ =
|Ω0|√

λ2
α + |Ω0|2

(14b)

cos θ =
|Ω0|√

λ2
β + |Ω0|2

(14c)
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and the corresponding eigenvalues λα and λβ are given by

λα = −∆0

2
+ (

∆2
0

4
+ |Ω0|2)

1
2 , (15a)

λβ = −∆0

2
− (

∆2
0

4
+ |Ω0|2)

1
2 . (15b)

The initial conditions C3(0) = 1, αj(0) = βj(0) = 0, for all
values of j. After simple calculation as done in Section 2.1,
the asymptotic form of the state vector can be expressed as

|Ψ (t→∞)〉 =
∑
j

αj(t)b+j |0〉 |α〉+
∑
j

βj(t)b+j |0〉 |β〉

(16)

where

αj(t→∞) = g cos θ
e−iλαt

γ/2− i(λα + δj +∆0)
(17a)

βj(t→∞) = g sin θ
e−iλβt

γ/2− i(λβ + δj +∆0)
(17b)

with

γ = 2π[cos2 θD(ω32 − λα)g2(ω32 − λα)

+ sin2 θD(ω32 − λβ)g2(ω32 − λβ)]. (18)

The spectrum of the spontaneously emitted light is

S (ω) ∝
(
|αω(∞)|2 + |βω(∞)|2

)
=

cos2 θ

(γ/2)2 + (δ +∆0 + λα)2
+

sin2 θ

(γ/2)2 + (δ +∆0 + λβ)2

(19)

with δj replaced by δ = ω − ω32.

3 Discussion of the analytic results

While greatly simplified in nature, the models discussed
in the preceding section contain the essential physical fea-
tures that we wish to emphasize in this paper.

In the case of upper level coupling when the driving
field is at the resonance with the 3–1 transition, the equa-
tion (12) shows that the emission line is split symmetri-
cally around δ = 0; the two side lobes have equal heights
and the maxims are located at δ = ± |Ω0|. Furthermore,
the full width at half maximum of each of the side lobes
is given approximately by

∆ω =
1
2
γ(1 +

|Ω0|2

(γ/2)2
) + 0(|Ω0|4) (20)

in the limit in which |Ω0| � γ/2. Hence, it follows that
in the presence of a coherent driving field, even with an
arbitrarily small amplitude and detuning, the emission
spectrum is split into two parts. Two examples are shown
in Figure 2 under resonance conditions for two different
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Fig. 2. Spontaneous
emission spectrum S(ω)
for the upper level cou-
pling case with ∆0 = 0,
γ = 1.0 and (a) Ω0 =
0.3, (b) Ω0 = 3.0.
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Fig. 3. Spontaneous
emission spectrum S(ω)
for the upper level cou-
pling case with Ω0 = 3,
γ = 1.0 and (a) ∆0 =
1.0, (b) ∆0 = 5.0.

values of the driving field strength (note that in all the
spectral displays, for simplicity, we have set the coupling
constant g equal to unity).

When the driving field is detuned away from the ω31

transition frequency, the effect is illustrated in Figure 3
for a fixed value of the driving field Rabi frequency and
two different positive values of the detuning parameter
∆0. This figure shows that while the peak heights of the
two spectral components remain the same, an increase of
∆0 > 0 broadens the width of the left half of the spectrum
and narrows the width of the spectral component on the
right one. The situation is reversed, relative to the origin of
the frequency axis, if the detuning parameter is negative.
In the limit in which |∆0| � |Ω0| , the full widths at half
maximum of the right and left peaks in Figure 3 are given
approximately by

∆ωR ≈
1
2
γ
|Ω0|2

∆2
0

, ∆ωL ≈
1
2
γ

(
1− |Ω0|2

∆2
0

)
(21)

(the subscripts R and L in Eq. (8) denote right and left,
respectively).

In the case of the lower level coupling (Fig. 1b),
the fluorescence spectrum is the incoherent sum of two
Lorentzian lines, see equation (19), each component has a
full width at half maximum, γ. On resonance, the two lines
have the same heights, as illustrated in Figure 4, while out
of resonance one of the lines becomes more intense relative
to the other (see Fig. 5).

Under resonance conditions, when the strength of the
driving field decreases and eventually approaches zero, the
frequency spacing between the dressed doublets vanishes
for both cases. It is clear that, eventually, the spectra in
both the upper and lower coupling schemes will have to
approach the usual Lorentzian distribution function. This
is true, indeed, but their approach to the Lorentzian shape
is very different. In the case illustrated in Figure 1a the
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Fig. 4. Spontaneous
emission spectrum S(ω)
for the lower level cou-
pling case with ∆0 = 0,
γ = 1.0 and (a) Ω0 =
0.3, (b) Ω0 = 2.0.
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Fig. 5. Spontaneous
emission spectrum
S(ω) for the lower
level coupling case
with Ω0 = 3, γ = 1.0
and (a) ∆0 = 1.0, (b)
∆0 = 10.

spectrum is always split into two side lobes with a dark
in the middle, which disappears only in the absence of the
coherent driving field, as shown by curve (a) in Figure 2. In
the case of the lower level coupling, as the Rabi frequency
of the driving field decrease, the dip that separates the two
side lobes becomes smaller until, eventually, it disappears
when |Ω0| becomes of the order of a few tenths of γ for
∆0 = 0 (see curve (a) of Fig. 4).

When the magnitude of the detuning parameter ∆0

increases, the spontaneous-emission spectra are again to
approach a Lorentzian shape, as the effect of the driving
field becomes less and less pronounced. This continues to
be true in both cases, but the approach to the Lorentzian
emission line is again very different for the two models.
This is apparent from the results shown in Figures 3 and 5.

We must stress that these results apply, strictly speak-
ing, only to the idealized models analyzed in Section 2,
where we have ignored the effects of the pumping mech-
anisms which are needed to prepare the atoms in their
initial state, and the possible influence of additional com-
peting decays. These effects will be described in more de-
tail in the following section.

4 A more realistic model

It is surely not too realistic to expect that the atom can
be placed in its initial excited state just at it enters the
interaction region. What can be accomplished more easily
in a practical setting is to let the interaction of the atoms
with the driving fields begin at some arbitrary time, for
example when an atom from an atomic beam enters the
region occupied by the driving fields, and then to monitor
the fluorescence spectrum under steady-state conditions,
as done typically in resonance fluorescence studies.

For this purpose we consider an extension of the mod-
els illustrated in Figures 1a and 1b, which includes a sec-
ond coherent driving field, Ω1, at or near resonance with

the 2–3 transition and also an incoherent pump mecha-
nism characterized by a pump rate W23. The reason for
these modifications is to monitor explicitly the effect of the
pumping process on the pure interference effect. Further-
more, we also include the remaining spontaneous decay
processes at the rates Wij , where i is the starting and j is
the terminal level of the decay. The coherent driving field,
which is already part of the simplified models, continues
to be applied to the same pair of level and to be denoted
by the Rabi frequency Ω0.

It is no longer practically feasible to handle the ex-
tended models by the Weisskopf-Wigner method (state
vector method). It is much easier, instead, to describe
the atomic evolution by the standard master equation ap-
proach and to derive expressions for the spontaneous emis-
sion spectra with the help of the regression theorem [12].
The drawback of the increased generality of the models
is that it is no longer possible to identify by inspection
the terms responsible for quantum interference, although
their presence is obvious from the final numerical results.

We begin with the upper level coupling case. In the
presence of a second coherent driving field connecting lev-
els 2 and 3 of Figure 1a the interaction Hamiltonian in the
interaction representation takes the form

HI(t) = −~∆0 |3〉 〈3| − ~(∆0 −∆1) |2〉 〈2|
+ i~(Ω0 |3〉 〈1| −Ω∗0 |1〉 〈3|) + i~(Ω1 |3〉 〈2| −Ω∗1 |2〉 〈3|)

(22)

where ∆0 is defined as in equation (3), and

∆1 = ω1 − ω32. (23)

The calculation is based on the master equation and the
regression theorem along the lines of reference [13]. The
relevant equations of motion for the matrix elements of
the density operator (in the interaction representation)
can be written in the form

d
dt
Ψ = LΨ + I (24)

where

Ψ1 = ρ12, Ψ2 = ρ13, Ψ3 = ρ21, Ψ4 = ρ22,

Ψ5 = ρ23, Ψ6 = ρ31, Ψ7 = ρ32, Ψ8 = ρ33. (25)

The matrix L has the explicit form

L =

−Γ12 −Ω1 0 0 0 0 −Ω∗0 0

Ω∗1 −Γ13 0 −Ω∗0 0 0 0 −2Ω∗0
0 0 −Γ21 0 −Ω0 −Ω∗1 0 0

0 0 0 −W21 −W23 −Ω1 0 −Ω∗1 0

0 0 Ω∗0 Ω∗1 −Γ23 0 0 −Ω∗1
0 0 Ω1 −Ω0 0 −Γ31 0 −2Ω1

Ω0 0 0 Ω1 0 0 −Γ32 −Ω1

0 Ω0 0 W23 Ω1 Ω∗0 Ω∗1 −W32 −W31


(26)
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where

Γ12 = γ12 + i(∆0 −∆1), Γ13 = γ13 + i∆0,

Γ21 = γ21 − i(∆0 −∆1), Γ23 = γ23 + i∆0,

Γ31 = γ31 − i∆0, Γ32 = γ32 − i∆0, (27)

γij =
1
2

3∑
k=1

(Wik +Wjk) (28)

the inhomogeneous vector I has nonzero components

I2 = Ω∗0 , I6 = Ω0. (29)

The required spectrum is proportional to the Fourier
transform of the two-time correlation function

Γ (1)(t1, t0) =
〈
P (−)(t1)P (+)(t0)

〉
(30)

where P (+) = µ23b
+
2 b3, P

(−) =
[
P (+)

]+
Equation (24) must be calculated in steady state, i.e.

under the double limit

t0, t1 →∞, t1 − t0 = τ > 0 (31)

where τ is arbitrary. Following the same procedure as de-
scribed in reference [13] leads to the result

Γ (1)(τ) = µ2
23

[ (
eLτ
)

53
Ψ6(∞) +

(
eLτ
)

54
Ψ7(∞)

+
(
eLτ
)

55
Ψ8(∞) +

∫ τ

0

dτ ′
8∑
j=1

(eL(τ−τ ′))5jIjΨ7(∞)
]

(32)

where

Ψi(∞) = −
8∑
j=1

(L−1)ijIj (33)

denotes the ith stationary matrix element of the density
operator, according to the notations introduced in equa-
tion (25).

After elimination of the coherent part, the spectrum
of the radiated fluorescence is given by

S(ω) = Re
∧
Γ

(1)

incoh (z) |z=iω (34)

where
∧
Γ

(1)

incoh (z), the so-called incoherent part of the
Laplace transform of Γ (1)(z), has the explicit form

∧
Γ

(1)

incoh (z) = M53(z)Ψ6(∞) +M54(z)Ψ7(∞)

+M55(z)Ψ8(∞) +
8∑
j=1

N5j(z)IjΨ7(∞) (35)

and where

Mij(z) =
[
(z − L)−1

]
ij
, Nij(z) =

[
L−1 (z − L)−1

]
ij
.

(36)

For the case of the lower level coupling the interaction
Hamiltonian is given by

HI(t) = −~(∆1 +∆0) |3〉 〈3| − ~∆0 |2〉 〈2|+ i~(Ω0 |2〉 〈1|
−Ω∗0 |1〉 〈2|) + i~(Ω1 |3〉 〈2| −Ω∗1 |2〉 〈3|). (37)

With the same assignment of the components of the vector
Ψ as given by equation (25), the new matrix L takes the
form

L =

−Γ12 −Ω1 0 −Ω∗0 0 0 0 −Ω∗0
Ω∗1 −Γ13 0 0 −Ω0 0 0 0

0 0 −Γ21 −2Ω0 0 −Ω1 0 −Ω1

Ω0 0 −Ω∗0 −W21 −W23 −Ω1 0 −Ω1 0

0 Ω0 0 Ω∗1 −Γ23 0 0 −Ω∗1
0 0 Ω1 0 0 −Γ31 −Ω0 0

0 0 0 Ω1 0 Ω∗0 −Γ32 −Ω1

0 0 0 W23 Ω1 0 Ω∗1 −W32 −W31


(38)

where

Γ12 = γ12 + i∆0, Γ13 =γ13 + i(∆0 +∆1), Γ21 =γ21 − i∆0,

Γ23 = γ23 − i∆1, Γ31 =γ31 − i(∆0 +∆1), Γ32 =γ32 − i∆0

(39)

and the inhomogeneous vector I has nonzero components

I1 = Ω∗0 , I3 = Ω0. (40)

With the chosen notations, the fluorescence spectrum is
given again by equations (34–36).

Of course, the inclusion of the additional driving fields
and decay pathways and the incoherent pump processes
changes the structure of the ideal spectrum discussed in
Sections 2 and 3, but the differences are mainly quan-
titative unless the added decay rates become too large
in comparison with the Rabi frequency Ω0. With a care-
ful selection of the atomic levels it should be possible to
display evidence of the essential differences between the
upper and lower level coupling, at least as quantum in-
terference effects are concerned. As an example we show
the fluorescence spectra from two identical sets of atoms
with the same driving field Ω0 applied to the transition
1–3 of Figure 1a and 1–2 of Figure 1b. In both cases a
second weaker field is responsible for creating the initial
state of excitation whose spontaneous emission yields the
calculated spectrum. The results are shown in Figures 6
and 7, respectively, and are certainly quite different from
each other in spite of the fact that all the parameters of
the problem are identical in the two cases. Also, the qual-
itative similarity with the results shown in Figures 2 and
4 should be immediately apparent, in support of our pre-
vious claims to the effect that the inclusion of additional
complications should not alter the appearance of interfer-
ence effects to the point of making them unobservable.

From above discussion we can see that quantum in-
terference exist in the case of upper level coupling, but
it does not in the case of lower level coupling and its
spectrum is the incoherent sum of two Lorentzian lines.



272 The European Physical Journal D

-3 -2 -1 0 1 2 3
0

1

2

3

4

ω-ω
32

S(ω)

Fig. 6. Spontaneous emission spectrum S(ω) for the upper
level coupling case with Ω0 = 0.1, Ω1 = 0.001, ∆0 = ∆1 = 0,
W21 = 0.01, W23 = 0.1, W31 = 0.01, and W32 = 0.1.
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Fig. 7. Spontaneous emission spectrum S(ω) for the lower
level coupling case with Ω0 = 0.1, Ω1 = 0.001, ∆0 = ∆1 = 0,
W21 = 0.01, W23 = 0.1, W31 = 0.01, and W32 = 0.1.

If the spontaneous decay of the state 2 to 1 is included,
the interference can appear in the lower level coupling.
The transition of state 2 to 1 produces a new pathway,
which makes the interference possible. The origin and the
restoration of missing interference in emission is also stud-
ied by reference [14].

Appendix

The purpose of this appendix is to sketch the solution of
the coupled amplitude equations (5) following a straight-
forward generalization of the Weisskopf-Wigner procedure

[11]. We start by deriving explicit formal solutions of equa-
tion (5a)

C2j(t) = C2j(0)− gj
∫ t

0

eiδjt
′
C3(t′)dt′. (A.1)

After imposing the initial conditions, substitution of equa-
tion (A.1) into equation (5b) yields

·
C3 (t) = Ω0e−i∆0tC1(t) +

∞∑
j=1

gje−iδjt

− gj
∫ t

0

eiδjt
′
C3(t′)dt′. (A.2)

Next, we solve equation (A.2) along the lines of the tradi-
tional approach of Weisskopf and Wigner, with the result

·
C3 (t) = Ω0e−i∆0tC1(t) +

1
2
γC3(t) (A.3)

where γ = 2πD(ω32)g2(ω32), D(ω32) is the vacuum
density of models calculated at the atomic transition
frequency.

After replacing C3(t′) on the right-hand side of equa-
tion (A.1) with the solution of equations (A.3, 5c), and
carrying out the elementary integration, equation (7c)
follow, in the longtime and infinite volume limits.
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